DISINFECTION OF WASH WATER By pH & ORP

- Chlorine, Ozone, Peroxyacetic Acid etc are Oxidizer
- Oxidation is Transfer of Electrons
- Microbes lose electrons and are Oxidized (killed)
- Transfer of Electrons creates an Electrical Potential
- Electron Potential generated by the Oxidizer is ORP
- ORP = Oxidation Reduction Potential
- It is a Potential, and measured in millivolts
- Stronger the ORP, faster the microbe is killed
- ORP measures disinfection NOT ppm of Chlorine

Chlorine + electron → Killed Microbe

ORP (mV)	KILL TIME E. COLI
450	Infinite
500	1 hour
550	100 seconds
600	10 seconds
650	0 seconds

Experience shows that tougher organisms require slightly higher ORP Listeria, Salmonella, Yeast, Mold need \geq 750mV

Typical ORP in Produce Wash Water is 650 mV

CHLORINE CHEMISTRY

Automation of Water Treatment Process pH & ORP

Operation:

- Sensors monitor pH and ORP
- Control automatically turn chemical pump On/Off as needed
- Always maintain a tight chemical concentration range
- Inject Chemical only on demand or as needed
- Self Maintains and adjusts to organic load
- Datalogger maintains a continuous record
- Operates only when the process is ON
- Smart Logic allows "Hands Free" Operation
- Special sensors require low maintenance

Advantages:

- Continuous Digital Readout
- Continuous Chemical Control
- Continuous Recording
- Efficient Chemical Use and minimize Waste
- Increase Product Shelf Life
- Increase Product Safety
- Built-In Safety Alarms and Chemical Shut-Off
- Save Labor
- Save Time
- Save \$
- Strengthen HACCP
- Provide Efficacy to the Process
- Satisfy Food Safety Guidelines (WGA, IFPA)